
CLEAN CODE
Jeremie Dequidt

“Any fool can write code that a
computer can understand. Good
programmers write code that humans
can understand.

-Martin Fowler

WRITING GOOD / QUALITY CODE
➤ Matches technical specifications

➤ Bug-free

➤ Easy to read / easy to understand / easy to use

➤ Efficient

“Software entropy: An evolving system
increases its complexity unless work
is done to reduce it.

-Meir Lehman

“
Shipping first-time code is like going into debt. A
little debt speeds development so long as it is
paid back promptly with refactoring. The danger
occurs when the debt is not repaid. Every minute
spent on code that is not quite right for the
programming task of the moment counts as
interest on that debt. Entire engineering
organizations can be brought to a stand-still
under the debt load of an unfactored
implementation, object-oriented or otherwise.

-Ward Cunningham

GOOD PRACTICES
➤ Naming / Comments / Layout

➤ Principles:

➤ KISS

➤ DRY

➤ YAGNI

➤ SOLID

➤ Demeter’s Law

NAMING
➤ Variable / functions / class names should display intention

➤ Character cost for naming is now 0

➤ Should be auto-descriptive

NAMING
➤ Variable / functions / class names should display intention

➤ Character cost for naming is now 0

➤ Should be auto-descriptive

NAMING
➤ Variable / functions / class names should display intention

➤ Character cost for naming is now 0

➤ Should be auto-descriptive

➤ Names should be pronounceable (no abbr)

➤ Functions should be verb: getXXXX(), setXXXX(),
validateXXXX()…

➤ Booleans should answer true/false: isXXXX(), areXXXX()

➤ Name should be meaningful and easy to look-up

➤ Don’t use Magic Numbers: if (x == 4)

“Comments are always failure

-“Uncle Bob” Robert C. Martin

COMMENTS
➤ They:

➤ Lie

➤ Ages badly

➤ Are not refactorable

➤ Illustrates the failing at:

➤ Choosing a good name

➤ Splitting code into single intention functions

➤ Abstraction creation

EXAMPLE: COMPUTING 1/√X

EXAMPLE: COMPUTING 1/√X… EXPLANATIONS

CODE LAYOUT
➤ Files should be small ~200 lines (max: 500)

➤ Lines should have reasonable size [80; 120] characters

➤ Code should be correctly indented and spaced

➤ Code should be read from the beginning of the file to the end

“If you can't explain it simply, you
don't understand it well enough.

-Albert Einstein

KISS
➤ Keep it Simple, Stupid

➤ Use simplest logical way

➤ Avoid relying on many abstractions

➤ Will be easier to read later

KISS
➤ Keep it Simple, Stupid

DRY / DIE
➤ Don’t Repeat Yourself / Duplication Is Evil

➤ Avoid code duplication (hard to refactor)

➤ Factorize

➤ Limit  
responsibilities  
of entities

YAGNI
➤ You Ain’t Gonna Need It

➤ Prefer refactoring over new features (according to the Agile
Manifesto)

➤ Time dedicated to this feature will not be used for tests or
refactoring

YAGNI

SOLID
➤ Single Responsability Principle (SRP)

➤ Open-Closed Principle (OCP)

➤ Liskov Substitution Principle (LSP)

➤ Interface Segregation Principle (ISP)

➤ Dependency Inversion Principle (DIP)

SINGLE-RESPONSIBILITY PRINCIPLE
➤ Every object, class, and method needs to have a single

responsibility. If your objects/class/methods are doing too
much, you will end up with the well-known spaghetti code.

SINGLE-RESPONSIBILITY PRINCIPLE
➤ Every object, class, and method needs to have a single

responsibility. If your objects/class/methods are doing too
much, you will end up with the well-known spaghetti code.

SINGLE-RESPONSIBILITY PRINCIPLE
➤ Every object, class, and method needs to have a single

responsibility. If your objects/class/methods are doing too
much, you will end up with the well-known spaghetti code.

SINGLE-RESPONSIBILITY PRINCIPLE
➤ Every object, class, and method needs to have a single

responsibility. If your objects/class/methods are doing too
much, you will end up with the well-known spaghetti code.

OPEN-CLOSED PRINCIPLE
➤ Software entities should be open for extension but closed for

modification

OPEN-CLOSED PRINCIPLE
➤ Software entities should be open for extension but closed for

modification

OPEN-CLOSED PRINCIPLE
➤ Software entities should be open for extension but closed for

modification

OPEN-CLOSED PRINCIPLE
➤ Software entities should be open for extension but closed for

modification

LISKOV SUBSTITUTION PRINCIPLE (LSP)
➤ This principle says that objects of a superclass must be

replaceable with objects of their subclasses, and the
application should still work as expected.

LISKOV SUBSTITUTION PRINCIPLE (LSP)
➤ This principle says that objects of a superclass must be

replaceable with objects of their subclasses, and the
application should still work as expected.

LISKOV SUBSTITUTION PRINCIPLE (LSP)
➤ This principle says that objects of a superclass must be

replaceable with objects of their subclasses, and the
application should still work as expected.

LISKOV SUBSTITUTION PRINCIPLE (LSP)
➤ This principle says that objects of a superclass must be

replaceable with objects of their subclasses, and the
application should still work as expected.

INTERFACE SEGREGATION PRINCIPLE
➤ The software should be split into multiple independents

parts. Side-effects should be reduced as much as possible to
ensure independence

INTERFACE SEGREGATION PRINCIPLE

INTERFACE SEGREGATION PRINCIPLE

INTERFACE SEGREGATION PRINCIPLE

INTERFACE SEGREGATION PRINCIPLE

DEPENDENCY INVERSION PRINCIPLE
➤ We should rely on abstractions, not on concrete

implementations. The software should have low coupling and
high cohesion.

DEPENDENCY INVERSION PRINCIPLE
➤ We should rely on abstractions, not on concrete

implementations. The software should have low coupling and
high cohesion.

DEPENDENCY INVERSION PRINCIPLE
➤ We should rely on abstractions, not on concrete

implementations. The software should have low coupling and
high cohesion.

DEMETER’S LAW
➤ a module should not have the knowledge on the inner details

of the objects it manipulates.

➤ Don’t talk to strangers

DEMETER’S LAW
➤ a module should not have the knowledge on the inner details

of the objects it manipulates.

➤ Don’t talk to strangers

OTHER PRINCIPLES
➤ Prevent side-effects in functions / methods

➤ Use early returns principle:

OTHER PRINCIPLES
➤ Prevent side-effects in functions / methods

➤ Use early returns principle:

OTHER PRINCIPLES
➤ Prevent side-effects in functions / methods

➤ Use early returns principle

➤ Limit the numbers of parameters (2 / 3)

CODE SMELLS / CODDING HORS

TOOLS

CODE INDENTATION
➤ Clang-format

CODE INDENTATION
➤ Clang-format

CODE INDENTATION
➤ Clang-format

DUPLICATES SEARCH
➤ pmd

USE STATIC CHECKERS
➤ clang-tidy, rats, cppcheck, oclint…

USE MEMORY CHECKERS / DATA VALIDATOR
➤ valgrind, clang

➤ yamllint, csvlint

BUILD AUTOMATION PIPELINE — GITLAB

BUILD AUTOMATION PIPELINE — GITLAB

THE END !

