CLEAN CUDE

Any fool can write code that a
computer can understand. Good
programmers write code that humans
can understand.

-Martin Fowler

WRITING GOOD / QUALITY CODE

» Matches technical specifications
> Bug-free

» Easy to read / easy to understand / easy to use

[] i o
» Efficient :_bj’_ ONMLY VAL mMeASuge men T
OF Code QuacLiTry: WTFs/mivyre

\I‘\/‘f F
| |
f—_:il 2 ‘i;‘\ ! |
‘ COEFQ ; Z W F | |
REeview j o~ ('
5 il ,
I
— | m— W
Il i A

GQOCJ\ Code . n BAd codle .

(c) 2008 Focus Shift/OSNews/Thom Holwerda - http://www.osnews.com/comics

Software entropy: An evolving system
increases its complexity unless work
is done to reduce it.

-Meir Lehman

Shipping first-time code is like going into debt. A
little debt speeds development so long as it is

paid back promptly wit.
occurs when the debt is
spent on code that is
programming task of

n refactoring. The danger
not repaid. Every minute
not quite right for the
the moment counts as

interest on that debt. Entire engineering

organizations can be brought to a stand-still
under the debt load of an unfactored

implementation, object-

oriented or otherwise.

-Ward Cunningham

G0O0D PRACTICES

» Naming / Comments / Layout
» Principles:

» KISS

» DRY

» YAGNI

» SOLID

» Demeter’s Law

NAMING

» Variable / functions / class names should display intention
» Character cost for naming is now 0

» Should be auto-descriptive

public List<int[]> getList ()
{

List<int[]> 12 = new ArrayList<int[]>();
for (int[] x : this.l1)

if (x[0] == 4) 12.add(x);
return 12;

NAMING

» Variable / functions / class names should display intention
» Character cost for naming is now 0

» Should be auto-descriptive

public List<int[]> getDeadCells ()
{

List<int[]> deadCells = new ArrayList<int[]>();
for (int[] cell : this.allTheCells)

if (cell[STATUS_OFFSET] == DEAD) deadCells.add(cell);
return deadCells;

NAMING

» Variable / functions / class names should display intention
» Character cost for naming is now O
» Should be auto-descriptive

» Names should be pronounceable (no abbr)

» Functions should be verb: getXXXX(), setXXXX(),
validateXXXX()...

» Booleans should answer true/false: isXXXX(), areXXXX ()
» Name should be meaningful and easy to look-up

» Don’t use Magic Numbers: if (x == 4)

Comments are always failure

-“Uncle Bob” Robert C. Martin

COMMENTS

> Ages badly
> Are not refactorable
» Illustrates the failing at:
» Choosing a good name
» Splitting code into single intention functions

» Abstraction creation

EXAMPLE: COMPUTING 1/yX

float Q_rsqrt(float number)
{

long 1;
float x2, vy;
const float threehalfs = 1.5F;

= number * 0.5F;
= number;

= * (long *) &y; // evil floating point

= Ox5f3759df - (1 >> 1); // what the fuck

= * (float *) &ti;

=y * (threehalfs - (x2 *y *xy)); // 1st iteration

=y * (threehalfs - (x2 *y *y));, // 2nd iteration, can be removed

return vy;

EXAMPLE: COMPUTING 1/yX. .. EXPLANATIONS

The integer aliased to a floating &
point number (in blue), compared to a
scaled and shifted logarithm (in gray).

It then appears that I, is a scaled and shifted piecewise-linear approximation of log, (), as illustrated in the figure on the right. In other words, log, (z) is

Algorithm (edi) approximated by

1
The algorithm computes T by performing the following steps:
T

1. Alias the argument z to an integer as a way to compute an approximation of the binary logarithm log, (z)

1 1

2. Use this approximation to compute an approximation of log, (—) =—=

Va 2

3. Alias back to a float, as a way to compute an approximation of the base-2 exponential
4. Refine the approximation using a single iteration of Newton's method.

log, (z)

Floating-point representation [edit]
Main article: Single-precision floating-point format

Since this algorithm relies heavily on the bit-level representation of single-precision floating-point numbers, a short overview of this representation is provided here. In order to encode a non-zero

real number z as a single precision float, the first step is to write "z" as a normalized binary number:17]

&= +1biboby ... x 2%
= £2%(1+m,)

where the exponent e, is an integer, m, € [O, 1). and 1.b; bybs . . . is the binary representation of the "significand” (1 + mw). Since the single bit before the point in the significand is always 1, it
need not be stored. From this form, three unsigned integers are computed:!18]

S, the "sign bit", is 0 if z is positive and 1 negative or zero (1 bit)
o E, = e, + B is the "biased exponent', where B = 127 is the "exponent bias"l"°te 3] (8 bits)
o M, =m, x L, where L = 223[note 4] (23 pits)
These fields are then packed, left to right, into a 32-bit container.[19]
As an example, consider again the number z = 0.15625 = 0.001015. Normalizing z yields:
2 =+27%(1+0.25)
and thus, the three unsigned integer fields are:
«§5=0
¢ BE=-3+127 =124 = 0111 1100,
o M =0.25 x 2% = 2097 152 = 0010 0000 0000 0000 0000 0000,
these fields are packed as shown in the figure below:

sign exponent (8 bits) significand (23 bits)

1T T 1
[o]o]]]1]1]1]o[o]o[]o]o]0]0]o]o[o] o] o] o] o] o]o]o[o] o] o] o]0]0]e] = 0.15625
3130 2322 (bit index) 0

Aliasing to an integer as an approximate logarithm |[edit]

1 1 1 1
If 7 were to be calculated without a computer or a calculator, a table of logarithms would be useful, together with the identity log;, <7) = log, <z 2) =-3 log, (z), which is valid for
T z

every base b. The fast inverse square root is based on this identity, and on the fact that aliasing a float32 to an integer gives a rough approximation of its logarithm. Here is how:
If z is a positive normal number:

z=2%(14+m,)
then

log, (z) = e, +logy (1 +my)
and since m,, € [0, 1), the logarithm on the right hand side can be approximated by!2°]

logy (1 +mg) ®my, + 0

1 1+In(In(2))

where o is a free parameter used to tune the approximation. For example, ¢ = 0 yields exact results at both ends of the interval, while o = 377 T(Z)
approximation (the best in the sense of the uniform norm of the error). However, this value is not used by the algorithm as it does not take subsequent steps into account.

= 0.0430357 yields the optimal

Thus there is the approximation

log, (z) ~ e, +m, + 0. s /]
Interpreting the floating-point bit-pattern of z as an integer I, yields[note 51 Jo—)
I, =E,L+M, -
= L(e; + B+my) son
=L(es + my +0+B—0) oo
~ Llog,(z) + L(B — o). I S

The integer aliased to a floating &
point number (in blue), compared to a
scaled and shifted logarithm (in gray).

It then appears that I, is a scaled and shifted piecewise-linear approximation of log, (z), as illustrated in the figure on the right. In other words, log, (z) is
approximated by

logy (&) ~ 2= — (B~ o).

First approximation of the result |edit]

1
The calculation of y = —— is based on the identity

log, (y) = — 3 logy (x)
Using the approximation of the logarithm above, applied to both z and y, the above equation gives:

Thus, an approximation of I, is:
I,~3L(B-0)- 1L

which is written in the code as
i = ox5f3759df - (i >>1);

The first term above is the magic number
3 L(B - o) = 0x5F3759DF

1
from which it can be inferred that o ~ 0.0450466. The second term, §I$, is calculated by shifting the bits of I, one position to the right.[21]

Newton's method |edit]
Main article: Newton's method

1
With y as the inverse square root, f(y) = - —T= 0. The approximation yielded by the earlier steps can be refined by using a root-finding method, a
Y

method that finds the zero of a function. The algorithm uses Newton's method: if there is an approximation, y,, for y, then a better approximation y,,.1 can be

calculated by taking y,, — %, where f'(y,) is the derivative of f(y) at y,,.22] For the above f(y),
y’n
Y (3 - f”y%)
Yn+1 = P)
1 , 2
where f(y) = y_2 —zand f'(y) = —y—3.

Treating y as a floating-point number, y = yx(threehalfs — x/2xyxy); is equivalentto

3z, yn (3 — z92)
Yntl = Yn E—Eyn =f'
By repeating this step, using the output of the function (y,,+1) as the input of the next iteration, the algorithm causes y to converge to the inverse square

root.[23] For the purposes of the Quake /Il engine, only one iteration was used. A second iteration remained in the code but was commented out.[5]

Accuracy |edit]

As noted above, the approximation is surprisingly accurate. The single graph on the right plots the error of the function (that is, the error of the approximation
after it has been improved by running one iteration of Newton's method), for inputs starting at 0.01, where the standard library gives 10.0 as a result, while
InvSqrt() gives 9.982522, making the difference 0.0017478, or 0.175% of the true value, 10. The absolute error only drops from then on, while the relative error
stays within the same bounds across all orders of magnitude.

“C;:‘é

5
—
—

Relative error between direct
calculation and fast inverse square
root carrying out 0, 1, 2, 3, and 4
iterations of Newton's root-finding
method. Note that double precision
is adopted and the smallest

CODE LAYOUT

» Files should be small ~200 lines (max: 500)
» Lines should have reasonable size [80; 120] characters
» Code should be correctly indented and spaced

» Code should be read from the beginning of the file to the end

00

#include <stdio.h> #define THIS printf(

#define IS "S%s\n"

#define OBFUSCATION ,v);

double h[2]; int main(_, v) char *v; int _; { int a = 0; char f[32]; h[2%2] =
2191444119706963415345639101882402617070952317017776099732075945943680039407307212501870429040900672146
3388339383036594392377406351605008558130303574923726828878580546164896054415898297404330659950766502291
52079883597110973562880.000000; h[4%3] = 1867980801.569119; switch (_) { case 0: THIS IS OBFUSCATION
break; default: main(0,(char *)h); break; } }

If you can't explain it simply, you
don't understand it well enough.

-Albert Einstein

» Keep it Simple, Stupid
» Use simplest logical way

» Avoid relying on many abstractions

» Will be easier to read later

OCCAM'S RAZOR

Sure there are simpler ways to catch that bird,
but the complicated ones kick ass.

DRY / DIE

» Don’t Repeat Yourself / Duplication Is Evil
» Avoid code duplication (hard to refactor)

» Factorize

o I will not repeat myself
» Limit 1 will not™ repeat myself

responsibilities I will not repeat myself
I wdl not repeat myself

1 wdl not repeat myself
I wil not repeat myself

of entities

I wil not repeat myself
1 wdl not repeat myself
I wdl not repeat myself

DON'T REPEAT YOURSELF

Repetition is the root of all software evil

» You Ain’t Gonna Need It

> Prefer refactoring over new features (according to the Agile
Manifesto)

» Time dedicated to this feature will not be used for tests or
refactoring

00

WE BULT THE
FRSTEST ENGINE
FOR OUR APP

WHAT'S THE
SADDLE FOR?

THAT'S THE APP,
WE KINDA BLEW
OUR BUDGET ON

THE ENGINE

» Single Responsability Principle (SRP)
» Open-Closed Principle (OCP)

» Liskov Substitution Principle (LSP)
» Interface Segregation Principle (ISP)

» Dependency Inversion Principle (DIP)

SINGLE-RESPONSIBILITY PRINCIPLE

» Every object, class, and method needs to have a single
responsibility. If your objects/class/methods are doing too
much, you will end up with the well-known spaghetti code.

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

SINGLE-RESPONSIBILITY PRINCIPLE

» Every object, class, and method needs to have a single
responsibility. If your objects/class/methods are doing too
much, you will end up with the well-known spaghetti code.

4 Y

public class CalculatingMachine

{

private int result;

CalculatingMachine
- result : int public void processAdd(int a, int b)
+ processAdd(int, int) : void {

this.result = a+b;
System.out.printin(this.result);

}
}

\ V.

SINGLE-RESPONSIBILITY PRINCIPLE

» Every object, class, and method needs to have a single
responsibility. If your objects/class/methods are doing too
much, you will end up with the well-known spaghetti code.

" public class CalculatingMachine

{

private int result;

CalculatingMachine public void processAdd(int a, int b)
- result : int {
+ processAdd(int, int) : void this.result = this.add(a, b);
- add(int, int) : int this.print(this.result);
- print(int) : void }

private int add(int a, int b) {return a+b;}

private void print(int r) {System.out.printin(r);}

SINGLE-RESPONSIBILITY PRINCIPLE

» Every object, class, and method needs to have a single
responsibility. If your objects/class/methods are doing too
much, you will end up with the well-known spaghetti code.

public class CalculatingMachine

{

private int result;
private Calculator calculator;
private Printer printer;

public CalculatingMachine (Calculator c, Printer p)

this.calculator = c;
this.printer = p;

CalculatingMachine
+ processAdd(int, int) : void

public void processAdd(int a, int b)
{

this.result = this.calculator.add(a,b);
this.printer.print(this.result);

}

+ print(int) : void

public class Printer

{
B;Jblic void print(int r) {System.out.printin(r);}

Calculator
+ add(int, int) : int
public class Calculator

{
B;Jblic int add(int a, int b) {return a + b;}

} }

OPEN-CLOSED PRINCIPLE

» Software entities should be open for extension but closed for
modification

Open- Closed Prmaple

Open-chest surgery isn't needed when putting on a coat.

OPEN-CLOSED PRINCIPLE

» Software entities should be open for extension but closed for
modification

Chient

Chient - — Printcr

Printer | Printer 2

OPEN-CLOSED PRINCIPLE

» Software entities should be open for extension but closed for
modification

public class AreaCalculator

{
public double calculateArea(Object[] shapes)

double result = 0;

AreaCalculator for (Object shape : shapes)
+ calculateArea(Object[]) : double {

if (shape instanceof Rectangle)

{
Rectangle rect = (Rectangle) shape;
result += (rect.getWidth()*rect.getHeight());

}

if (shape instanceof Circle)

Rectangle Circle
- width: double - radius: double
- height: double + getRadius() : double { : : ,
+ getWidth() : double Circle circ = (Circle) shape;

: double

result += Math.PI*(circ.getRadius()*circ.getRadius());

}
}
return result;
}
}

OPEN-CLOSED PRINCIPLE

» Software entities should be open for extension but closed for
modification

2 N
public class AreaCalculator
{
AreaCalculator public double calculateArea(Shape[] shapes)
+ calculateArea(Shape[]) : double {
|

, double result = 0;

for (Shape shape : shapes)

{
‘l' result += shape.calculateArea();
<< abstract>> }
Shape
+ calculateArea() : double return result:
}
\, J
4 N
public class Circle extends Shape
Rectangle Circle {
- width: double - radius: double
- height: double + getRadius() : double public double calculateArea()
+ getWidth() : double +calculateArea() : double {
+ getHeight() : double return Math.PI*this.radius*this.radius;
+calculateArea() : double }
}

_ J

LISKOV SUBSTITUTION PRINCIPLE (LSP)

» This principle says that objects of a superclass must be
replaceable with objects of their subclasses, and the
application should still work as expected.

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

LISKOV SUBSTITUTION PRINCIPLE (LSP)

00

» This principle says that objects of a superclass must be
replaceable with objects of their subclasses, and the
application should still work as expected.

Rectangle

width: double
height: double

+ Rectangle(double, double)
+ getWidth() : double

+ setWidth(double) : void

+ getHeight : double

+ setHeight(double) : void

+ getArea() : double

Square

+ Square(double)
+ setWidth(double) : void
+ setHeight(double) : void

r

\,

public class Square extends Rectangle

{
public void setWidth(double newWidth)

{
this.width = newWidth;

this.height = newWidth;
}

public void setHeight(double newHeight)
{
this.width = newHeight;
this.height = newHeight;
}
}

LISKOV SUBSTITUTION PRINCIPLE (LSP)

» This principle says that objects of a superclass must be
replaceable with objects of their subclasses, and the
application should still work as expected.

Rectangle

width: double public class Square extends Rectangle
height: double {

public void setWidth(double newWidth)

+ Rectangle(double, double) Square {

+ getWidth() : double

+ setWidth(double) : void + Square(double) this.width = newWidth;

; . + setWidth(double) : void this.height = newWidth:
+ getHeight() : double + setHeight(double) : void) =

+ setHeight(double) : void

: doubl
ouble public void setHeight(double newHeight)

{
this.width = newHeight;
this.height = newHeight;
}
}

LISKOV SUBSTITUTION PRINCIPLE (LSP)

00

» This principle says that objects of a superclass must be
replaceable with objects of their subclasses, and the
application should still work as expected.

<< abstract >>
Shape
- width: double

- height: double
Shape(double, double)

+ getWidth() : double
+ getHeight() : double
+ getArea() : double <<abstract>>

N

Square Rectangle
+ Square(double) + Rectangle(double, double)
+ getArea() : double + getArea() : double

INTERFACE SEGREGATION PRINCIPLE

» The software should be split into multiple independents
parts. Side-effects should be reduced as much as possible to
ensure independence

INTERFACE SEGREGATION PRINCIPLE

Don't force the client to depend on things they don't use.

INTERFACE SEGREGATION PRINCIPLE

RestaurantManager

+ makeEat(Employee) : void

HotelManager
+ makeSleep(Employee) : void

WorkshopManager

+ makeWork(Employee) : void

—
s\
“ — -
\~\ ”
- —

<< interface >>
Employee
+ work() : void
+ eat() : void
+ sleep() : void

-
-7 RN
/ \

HumanEmployee RobotEmployee
+ work() : void + work() : void

+ eat() : void + eat() : void

+ sleep() : void + sleep() : void

INTERFACE SEGREGATION PRINCIPLE

<< interface >>
Employee
+ work() : void
+ eat() : void

HumanEmployee RobotEmployee
+ work() : void + work() : void
+ eat() : void + eat() : void

public class HumanEmployee public class RobotEmployee
implements Employee implements Employee

{ {
public void work () {...} public void work () {...}
public void eat () {...} public void eat () {}

public void sleep () {...} }public void sleep () {}
}

INTERFACE SEGREGATION PRINCIPLE

RestaurantManager
+ makeEat(Employee) : void
HotelManager WorkshopManager
+ makeSleep(Employee) : void + makeWork(Employee) : void

<< interface >>
Employee
+ work() : void
+ eat() : void

INTERFACE SEGREGATION PRINCIPLE

HotelManager WorkshopManager
+ makeSleep(Sleeper) : void + makeWork(Worker) : void

RestaurantManager
+ makeEat(Eater) : void

<< Interface >> << Interface >> << Interface >>
Sleeper Eater Worker
+ sleep() : void 3 + eat() : void + work()_: void

HumanEmployee
+ work() : void
+ eat() : void RobotEmployee
+ work() : void

DEPENDENCY INVERSION PRINCIPLE

» We should rely on abstractions, not on concrete
implementations. The software should have low coupling and
high cohesion.

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

DEPENDENCY INVERSION PRINCIPLE

» We should rely on abstractions, not on concrete
implementations. The software should have low coupling and

high cohesion.

Switch

- isClosed : boolean

+ Switch(Lamp)
+ isClosed() : boolean
+ press() : void

- lamp
4

Lamp

+ on() : void
+ off() : void

b

public class Switch

{

private Lamp lamp;
private boolean isClosed;

public Switch(Lamp theLamp)

{
this.lamp = theLamp;

this.isClosed = false;

}

public boolean isClosed() {return this.isClosed;}

public void press()

{
if (this.isClosed)

{
this.isClosed = false;
this.lamp.off();

}

else

{

this.isClosed = true;
this.lamp.on();

}

DEPENDENCY INVERSION PRINCIPLE

» We should rely on abstractions, not on concrete
implementations. The software should have low coupling and
high cohesion.

<< interface >> Switch
Switchable - switchable : Switchable
+ switchOn() : void - - isClosed : boolean
+ switchOff() : void + Switch(Switchable)
/\ + isClosed() : boolean
+ press() : void

La;np
+ switchOn() : void
+ switchOff() : void

DEMETER'S LAW

» a module should not have the knowledge on the inner details
of the objects it manipulates.

» Don’t talk to strangers

Bisa Cisa
“friend” “stranger”
of A to A¥
A ——> B ——> C
v e A 2
\\\ Messages from A to o
) B are OK e :
. .7 *Note: a friend of a
See L - -7 friend is a stranger.

Messages from A to
C are discouraged

DEMETER’S LAW

» a module should not have the knowledge on the inner details
of the objects it manipulates.

» Don’t talk to strangers

OTHER PRINCIPLES

» Prevent side-effects in functions / methods

» Use early returns principle:

00

public int confusingFonction(String name, int value, AuthenticationInfo permissions) {
int retval = SUCCESS;
if (globalCondition) {
if (name != null && !'name.equals("")) {
if (value !'= 0) {
if (permissions.allow(name)) {
// Action if allowed
} else {
retval = DENY;

}
} else {
retval = BAD_VALUE;
}
} else {
retval = INVALID_NAME;
}
} else {

retval = BAD_COND;
}

return retval,;

OTHER PRINCIPLES

» Prevent side-effects in functions / methods

» Use early returns principle:

public int lessConfusingFonction(String name, int value, AuthenticationInfo perms) {
if (!'globalCondition) {
return BAD_COND;

(name == null || name.equals("")) {
return BAD_NAME;

(value == 0) {
return BAD_VALUE;

(!perms.allow(name)) {
return DENY;

}
// Action i1f allowed

return SUCCESS;

OTHER PRINCIPLES

» Prevent side-effects in functions / methods
» Use early returns principle

» Limit the numbers of parameters (2 / 3)

CODE SMELLS / CODDING HORS

Large class

Duplicated code Refused bequest
Uncommunicative name Lazy class Type embedded in name

Message chain Conditional complexity Inappropriate intimacy

Data clumps
Speculative generality ~Comments Dea d CO d e

Primitive obsession >°t9Un S”rgery
Divergent change Feature envy Middle man
Long parameter list Long method

Wrong level of abstraction Alternative classes with different interfaces

I SEE YOU TEST,YOUR CODE IN
\ PRODUCTION

Data class

Inconsistent names

Temporary field

" 4

1TOO LIKETO _lIEf DANGEROUSLY

T00LS

CODE INDENTATION

» Clang-format

clang-format -I fichier.c

CODE INDENTATION

» Clang-format

void selectionR(unsigned char m[HAUTEUR][LARGEUR],int x,int y,int x1,int yl, unsigned char
reception[HAUTEUR] [LARGEUR]){

for(i=x;i< x1;i++)

for(j=y;j< yl;++j){

reception[i1[jl=m[i]1[j];

m[i][j]=0;

CODE INDENTATION

» Clang-format

void selectionR (unsigned char m[HAUTEUR][LARGEUR],
int X,
int Y,
int x1,
int yl,
unsigned char reception[HAUTEUR][LARGEUR])

int j, i;

for (i1 = x; 1 < x1; i++)
for (j =y; J <vyl;
{

reception[i][j]

m{t][j]

DUPLICATES SEARCH

$ pmd cpd --minimum-tokens 70 --language c --files projet.c
Found a 4 line (112 tokens) duplication in the following files:
Starting at line 43 of projet.c
Starting at line 79 of projet.c

void selection_ellipse(unsigned char image[HAUTEUR][LARGEUR],int C_x, int C_y, int a, int b, unsigned
char selection[2*b][2*a]){

for (int y = 0; y <2*xb; y++) { //balaie un rectangle de hauteur 2b et de largeur 2a (rectangle

contenant l'ellipse)
for (int x = 0; x < 2*a; x++) {

if (((pow((x-a),2))/(a*a) + (pow((y-b),2))/(b*b)) <=1) //vérifie que la portion
d'image est bien dans l'ellipse

USE STATIC CHECKERS

» clang-tidy, rats, cppcheck, oclint...

$ gcc negative.c
$ clang-tidy --quiet -checks='*' negative.c --

negative.c:12:3: warning: multiple declarations in a single statement reduces readability
[readability-isolate-declaration]

negative.c:12:7: warning: variable 'j' is not initialized [cppcoreguidelines-init-variables]

negative.c:12:9: warning: variable 'i' is not initialized [cppcoreguidelines-init-variables]

negative.c:14:20: warning: statement should be inside braces [google-readability-braces-around-
statements,hicpp-braces-around-statements,readability-braces-around-statements]

negative.c:25:3: warning: multiple declarations in a single statement reduces readability
[readability-isolate-declaration]

negative.c:25:7: warning: variable 'i' is not initialized [cppcoreguidelines-init-variables]

negative.c:25:9: warning: variable 'j' is not initialized [cppcoreguidelines-init-variables]

negative.c:28:9: warning: narrowing conversion from 'float' to 'int' [bugprone-narrowing-
conversions,cppcoreguidelines-narrowing-conversions]

negative.c:28:14: warning: narrowing conversion from 'int' to 'float' [bugprone-narrowing-
conversions,cppcoreguidelines-narrowing-conversions]

negative.c:44:14: warning: 255 is a magic number; consider replacing it with a named constant
[cppcoreguidelines-avoid-magic-numbers,readability-magic-numbers]

[...]

USE MEMORY CHECKERS / DATA VALIDATOR

» valgrind, clang

» yamllint, csvlint

BUILD AUTOMATION PIPELINE — GITLAB

00
tmage: debian

before_script:

- apt-get update -y

- apt-get upgrade -y

- apt-get install -y clang-format clang-tidy clang-tools clang make check cppcheck libcppunit-
subunit-dev lcov llvm valgrind

stages:
- codestyling
- check
- butild
- test
- coverage
- clean

job:codestyling:
stage: codestyling
script: ./scripts/run-clang-format.py -r src includes tests

job:check:tidy:
stage: check
script: clang-tidy src/*.c -- -Iincludes
when: always

job:check:cppcheck:
stage: check
script: cppcheck --enable=warning,style,portability src/*.c
when: alwavs

BUILD AUTOMATION PIPELINE — GITLAB

script: cppcheck --enable=warning,style,portability src/*.c
when: always

job:butild:

stage: build
script:

- mkdir butild

- make main
when: always
artifacts:

paths:

- build/

job:test:

stage: test
script:

- make tests

- build/tri_tests
when: on_success
artifacts:

paths:

- build/

job:memcheck:
stage: test
script: valgrind build/tri_comp
when: on_success

job:coverage:
stage: coverage
scrint:

[HE END !

