
SOFTWARE MAINTENANCE
Jeremie Dequidt

INTRODUCTION
➤ Assistant Professor in Computer Science

➤ Research activities: interactive simulation, computer graphics,
virtual / augmented reality

➤ Applications in medicine and soft robotics

INTRODUCTION
➤ Development of SOFA (https://www.sofa-framework.org)

➤ Since 2006

➤ GitHub stats: 249  606  93 

➤ 2 releases / year -> Linux, Win*, MacOS

➤ 850k loc, 60+ plugins (10m loc)

➤ 4 transfers of technology, 1 international patent

https://www.sofa-framework.org

NOTES
➤ These slides have been largely influenced by Nicolas Anquetil,

Benoît Combemale courses

➤ … and Anne Etien

PURPOSES OF THE COURSE
➤Understanding the importance of maintenance

➤Knowing the test mechanism

➤Developping tests first

➤Better understanding the object paradigm

➤Knowing the foundations of software quality

➤Knowing the rudiments of visualization

➤Discovering the continuous integration principles

➤Studying the quality of unknown software

➤Enhancing your own development.

COURSE ORGANISATION
➤ Introduction to maintenance

➤ Test driven development

➤ Practice 2 hours

➤ Continuous Integration, Clean Code

➤ Practice 3x 2 hours

COURSE EVALUATION
➤ Project restitution (gitlab repository)

➤ Exam

GOALS
➤ Why this course?

➤ Soft.Maint. is important

➤ Soft.Maint. is poorly understood

➤ Soft.Maint. is poorly performed

GOALS
➤ You understand

➤ Why software maintenance exists

➤ Why you did not like it

➤ Why you should like it

➤ Know some good practices

AGENDA
➤ Introduction (definitions)

➤ Importance of the topic

➤ Some facts

➤ Consequences

DEFINITION

Software maintenance is the
modification of a software product after
delivery to correct faults, to improve
performance or other attributes.

ISO/IEC 14764:2006 Software Engineering — 
 Software Life Cycle Processes — Maintenance

DEFINITION

Legacy software: A system which continues to
be used because of the cost of replacing or
redesigning it and often despite its poor
competitiveness and compatibility with modern
equivalents. The implication is that the system
is large, monolithic and difficult to modify.

mondofacto.com/facts/dictionary

AGENDA
➤ Introduction (definitions)

➤ Importance of the topic

➤ Some facts

➤ Consequences

LEGACY SOFTWARE

1 sheet ≃ 60 lines of code (LOC)

both sides = 120 LOC

LEGACY SOFTWARE

10 sheets = 1200 LOC

(1.2 KLOC)

LEGACY SOFTWARE

Windows NT 3.1 (1993)

 4 to 5 MLOC 3.75
m

3.20
m

Encyclopedia
Britanica 
(15 ed., 32
volumes)

LEGACY SOFTWARE

Windows NT 3.1 (1993)

 4 to 5 MLOC

41.7
m 46 m

Windows server 2003

50 MLOC

LEGACY SOFTWARE
➤ Linux kernel 3.6 

 16 MLOC

➤ MacOS X 10.4 
 86 MLOC

➤ Debian 5.0 
 324 MLOC

LEGACY SOFTWARE

RELEVANCE?
➤ Estimations:

➤ 120 billion LOC maintained in 1990 (Ulrich, 1990)

➤ 200 billion in 2000 (Sommerville, 2000)

RELEVANCE?
➤ Annual cost in USA > $70 billion (Sutherland, 1995;

Edelstein, 1993)

➤ Nokia spent $90 million on Y2K

➤ US government spent > $8 billion

RELEVANCE?

Cost of maintenance in a software life

1970s early 1980s late 1980s 1990s 2000s

100 %
90 %

75 %

55 %
40 %

from Pigoski
1996

AGENDA
➤ Introduction (definitions)

➤ Importance of the topic

➤ Some facts

➤ Consequences

SOME FACTS
➤ Dominant activity in software engineering

➤ Yet, still poorly understood and despised

➤ Punishment

➤ Probation

➤ No career advancement

TRUE/FALSE?
➤Maintenance can be eliminated with perfect development

➤Maintenance will be solved by modern technology (ex. Model
Driven Development)

➤Maintenance is difficult and boring

➤Better restart from scratch

True False

ELIMINATE MAINTENANCE?
➤ Why didn't they do it right in the first place?!?

➤ I am loosing time correcting other peoples' mistakes!

ELIMINATE MAINTENANCE?
➤ Development techniques improve all the time

➤ Software processes (Agile, TDD)

➤ Software quality (CMMI)

➤ Tools (IDEs, xUnit)

➤ Languages (AOP, MDD)

➤ Maintenance problem still exist !

MAINTENANCE CATEGORIES

4 %

21 %

25 %

50 %
Perfective
Adaptive
Corrective
Preventive

Diagnosing and
fixing errors, possibly
ones found by users

Modifying the
system to cope with
changes in the
software
environment

Implementing new or
changed user
requirements

Increasing software
maintainability or reliability
to prevent problems in the
future

HARDWARE / SOFTWARE
➤ Hardware maintenance:

➤ replacement of used parts

➤ Software maintenance:

➤ Source code doesn't wear

➤ Maintenance is mainly evolution

➤ Little bug correction

Software systems must be

continually adapted or they become

progressively less satisfactory

First law of software evolution [Lehman, 1974]

SOFTWARE AND ENVIRONMENT
➤ A system works within the real world

➤ The world changes:

• New business opportunities

• Growing user expectations

• New laws …

➤ Software systems must evolve or die (not useful)

➤ Maintenance is mainly due to external causes

THE MUSSEL SHACK
➤ Once upon a time, a fisherman in Dunkerque opened a small

mussel selling point

THE MUSSEL SHACK
➤ Business was good

THE MUSSEL SHACK
➤ Business was very good

THE MUSSEL SHACK
➤ Employees asked for a cafeteria

THE MUSSEL SHACK
➤ Directors requested their dinning room

THE MUSSEL SHACK
➤ Law imposed an emergency exit

THE MUSSEL SHACK
➤ Concurrents have fitness room, added a piscine

THE MUSSEL SHACK
➤ and they lived happily ever after …y

MORAL

Maintenance is a sign of
success! The system is used and
useful,the users want more

MORAL

Maintenance is a sign of
success! The system is used and
useful,the users want moreWell developed systems will

receive more maintenance

MORAL

Maintenance is a sign of
success! The system is used and
useful,the users want moreWell developed systems will

receive more maintenance

To eliminate maintenance, 

create bad systems

→ few users
→ too difficult to modify

MORAL

The better the system, the more
maintenance (evolution) 
it will require !

TRUE/FALSE?
➤Maintenance can be eliminated with perfect development

➤Maintenance will be solved by modern technology (ex. Model
Driven Development)

➤Maintenance is difficult and boring

➤Better restart from scratch

True False

✔

STANDISH GROUP STUDY ON THE SUCCESS OF SOFTWARE PROJECTS

0 %

25 %

50 %

75 %

100 %

2004 2006 2008 2010 2012

Success
Contested
Failure

LONG TERM AVAILABILITY
➤ Airbus A300 Life cycle

➤ Program began in 1972, production stopped in 2007

➤ 2007-1972 = 35 years

➤ Support will last until 2050

➤ 2050-1972 = 78 years!!

NEW TECHNIQUES
➤ Cobol > 60% of all code in the world [eWeeks, 2001]

➤ 180 GLOC in use, + 1GLOC/year [Gartner, 2006]

NEW TECHNIQUES
➤ Cobol – 1959

NEW TECHNIQUES
➤ Ada – 1983

➤ Creation of Internet (562 hosts)

➤ Macintosh did not exist

➤ MS Windows was announced 
(v1.0 in 1985)

NEW TECHNIQUES
➤ Ada – 1983

NEW TECHNIQUES
➤ New techniques do not target:

➤ Past technologies (Ada, Cobol)

➤ Existing systems

TECHNIQUES IMPROVEMENT
➤ Development techniques improve all the time

• Software processes (Agile, TDD)

• Software quality (CMMI)

• Tools (IDEs, xUnit)

• Languages (AOP, MDD)

➤ Maintenance problem still exist!

NEW TECHNIQUES
➤ New techniques do not target existing legacy software

➤ Miss 90+ % of the market

NEW TECHNIQUES
➤ New techniques (models) are still programs

➤ Programs are models of the world

➤ They will need to be maintained

TRUE/FALSE?
➤Maintenance can be eliminated with perfect development

➤Maintenance will be solved by modern technology (ex. Model
Driven Development)

➤Maintenance is difficult and boring

➤Better restart from scratch

True False

✔

✔

MORE DIFFICULT?

➤ Intrinsically more difficult than development

➤ Information missing on existing system

➤ Must preserve some backward compatibility (existing
data, user habits, …)

➤ More chaotic (reaction to external events)

➤ Less resources

➤ …

BORING?
➤ Difficult ≠ Boring

BORING?
➤ Easy ≠ Interesting

BORING?
➤ Maintenance is difficult

➤ Can be seen as an interesting challenge

➤ A good way to learn many things (e.g. programming tricks)

TRUE/FALSE?
➤Maintenance can be eliminated with perfect development

➤Maintenance will be solved by modern technology (ex. Model
Driven Development)

➤Maintenance is difficult and boring

➤Better restart from scratch

True False

✔

✔

✔ ✔

RESTART FROM SCRATCH
➤ Intuitively obvious solution

RESTART FROM SCRATCH
➤ Software ≠ Hardware

➤ Legacy software is successful

➤ New software =

➤ Costs

➤ New bugs

➤ Teaching user new habits

➤ Experience shows it can go very wrong

LOUVOIS EXAMPLE
➤Errors of payment computation in 2012: 465 millions euros

➤ Hundreds of militaries have not been paid during several months.

■In 1996, the French Army ministry launched a project to unify the payment inter-
armies.

■After several failures, the project entered in production in April 2011.

■It was abandoned in 2013

■Global cost of the project: 80 million euros

RESTART FROM SCRATCH
➤ Recommended action: re-engineer

➤ Less risky

➤ Iterative approach

➤ Build on tested and proved solution

➤ Down side

➤ Future constrained by the past

TRUE/FALSE?
➤Maintenance can be eliminated with perfect development

➤Maintenance will be solved by modern technology (ex. Model
Driven Development)

➤Maintenance is difficult and boring

➤Better restart from scratch

True False

✔

✔

✔ ✔

✔

AGENDA
➤ Introduction (definitions)

➤ Importance of the topic

➤ Some facts

➤ Consequences

CONSEQUENCES
➤ The problem is cultural first

➤ Maintenance is not taught (implies it is not important?)

➤ Computer science evolves fast (“newer is better”)

➤ Technology evolves fast (Cobol, Ada on iPhone?)

CONSEQUENCES
➤ First need to change perception

Legacy software: A system which continues to
be used because of the cost of replacing or
redesigning it and often despite its poor
competitiveness and compatibility with modern
equivalents. The implication is that the system
is large, monolithic and difficult to modify.

mondofacto.com/facts/dictionary

CONSEQUENCES
➤ First need to change perception

Legacy software: A system which continues to
be used because of the cost of replacing or
redesigning it and often despite its poor
competitiveness and compatibility with modern
equivalents. The implication is that the system
is large, monolithic and difficult to modify.

mondofacto.com/facts/dictionary

“Legacy code” often differs from its

suggested alternative by actually working

and scaling.

Bjarne Stroustrup

CULTURAL PROBLEM
➤ Wrong ideas about it

➤  Prejudice against it

➤  Not studied

➤  Not understood

➤  Wrong ideas about it

CULTURAL PROBLEM
Software maintenance is the
modification of a software product after
delivery to correct faults, to improve
performance or other attributes.

ISO/IEC 14764:2006 Software Engineering — 
 Software Life Cycle Processes — Maintenance

CULTURAL PROBLEM
Software maintenance is the
modification of a software product after
delivery to correct faults, to improve
performance or other attributes.

ISO/IEC 14764:2006 Software Engineering — 
 Software Life Cycle Processes — Maintenance

This is a mistake

MAINTENANCE SHOULD BE PREPARED
➤ Start before delivery

➤ Who will maintain?

➤ What technology do they know?

➤ How to pass knowledge to them?

➤ Note: Maintenance is a knowledge intensive activity

➤ 40% to 60% of the time is spent on studying the system

➤ Processes are different

➤ Maintenance involves a much longer analysis activity

➤ Maintenance less planned, more chaotic (external events)

➤ Requires a different approach

CLOSING REMARKS
➤ Software evolution is very important

➤ Need to change the habits

➤ Need to invest in maintenance

➤ Tools

➤ Training

SOME VIDEOS TO GO FURTHER
➤ https://www.youtube.com/watch?v=i8J20IjuwTw in French

(1h20)

https://www.youtube.com/watch?v=i8J20IjuwTw

