SOFTWARE MAINTENANCE

Jeremie Dequidt

INTRODUCTION

» Assistant Professor in Computer Science

» Research activities: interactive simulation, computer graphics,
virtual / augmented reality

» Applications in medicine and soft robotics

INTRODUCTION

» Development of SOFA (https://www.sofa-framework.org)

» Since 2006

> GitHub stats: 249 ¥ 606 1y 93 ‘&%

> 2 releases / year -> Linux, Win*, MacOS
» 850k loc, 60+ plugins (10m loc)

» 4 transfers of technology, 1 international patent

https://www.sofa-framework.org

» These slides have been largely influenced by Nicolas Anquetil,
Benoit Combemale courses

» ... and Anne Etien

PURPOSES OF THE COURSE

» Understanding the importance of maintenance

» Knowing the test mechanism

» Developping tests first

» Better understanding the object paradigm

» Knowing the foundations of software quality

» Knowing the rudiments of visualization

» Discovering the continuous integration principles
» Studying the quality of unknown software

» Enhancing your own development.

COURSE ORGANISATION

» Introduction to maintenance

» Test driven development
» Practice 2 hours
» Continuous Integration, Clean Code

» Practice 3x 2 hours

COURSE EVALUATION

» Project restitution (gitlab repository)

» Exam

» Why this course?
» Soft.Maint. is important
» Soft.Maint. is poorly understood

» Soft.Maint. is poorly performed

» You understand
» Why software maintenance exists
» Why you did not like it
» Why you should like it

» Know some good practices

AGENDA

» Introduction (definitions)
» Importance of the topic
» Some facts

» (Consequences

DEFINITION

Software maintenance s the
moaiiication ofia Soitware proauct arter:

aelivery toe correctiraults; to improve

PEHOGHTIanGE Or OIhEr atttibutes:

ISO/IEC 14764:2006 Software Engineering —
Software Lite Cycle Processes — Malntenance

DEFINITION

[legacy. sortware: A system Which continues to
pe Useqd because of the GCoSt ofireplacing or
redesigning It ana;oiten aespite IS Poor
competitiveness and compatibility,with rmoaen

equivalents: hheimplication s that the system
IS /arge, monolithic:ana: diffictlt:to moally.

mondofacto.com/facts/dictionary

AGENDA

» Introduction (definitions)
» Importance of the topic
» Some facts

» (Consequences

LEGACY SOFTWARE

1 sheet = 60 lines of code (LOC)

*/
public class VerveinelParser extends VerveineParser {
public static final String DEFAULT CODE_VERSION = Java

/!t
* Option: The version of Java expected by the parser
*

protected String codevVers = null;

/*i
* Option: wether to generate local informations (local to a type)
*

protected boolean withLocal = true;

e both sides = 120 LOC

* Needed to relativize the source file names
*

private Collection<String> argPath;

private Collection<String> argFiles;

/!t
* Java parser, provided by JDT
*

private ASTParser jdtParser = null;

public VerveineJParser() {
super();

jdtParser = ASTParser.newParser(AST.JLS3);|

protected SourceLanguage getMyLgge() {
return new JavaSourceLanguage();
}

public void setOptions(String[] args) {

Strinall cloccDoth — noy Cringll J 1.

LEGACY SOFTWARE

® © 06 06 06 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O 0 O O 0 O O O O O O 0 O O O O O O O O 0 O O 0 O 0 O O 0 O O O 0 O 0 O O O O 0 O O O O 0 O 0 O O O O 0 O 0 O O 0 O 0 O 0 O O 0 O 0 O 0 0 O O O 0 0 0 0O 0 0 0 0 0 0 o

*/

publi

—
—
. bli -
P publi
/ pr /
Pl /
/ P P .
p| o P / publi -
4 : ol P
P p| * / b / public class VerveinelParser extends VerveineParser {
*
/
P P / pr P public static final String DEFAULT CODE_VERSION = JavaCore.VERSION 1 5;
r.
o . N ¢ 7/ o
} P /* P * Option: The version of Java expected by the parser
* P *
Vi /
P p| * / P / P protected String codeVers = null;
pr
} ¥ P / P J¥x
P pu / p * Option: wether to generate local informations (local to a type)
} P */
P } P / protected boolean withLocal = true;
P
P } P / P|
1 F /*x
pr P p / P * The arguments that were passed to the parser
p|) } P * Needed to relativize the source file names
*/
P P P / private Collection<String> argPath;
pu) Y private Collection<String> argFiles
P P -
} P| / .
P) * Java parser, provided by JDT
P */
b P } private ASTParser jdtParser = null;
} P public VerveineJParser() {
P } super();
} P jdtParser = ASTParser.newParser(AST.JLS3)ﬂ
P }
}
protected SourceLanguage getMyLgge() {
P return new JavaSourcelanguage();
public void setOptions(String[] args) {
Siringll lasebDath — now Stripall L .

LEGACY SOFTWARE

Windows NT 3.1 (1993) N
4 to 5 MLOC 3.75

Encyclopedia
Britanica

(15ed., 32
volumes)

LEGACY SOFTWARE

Windows NT 3.1 (1993) [
4 to 5 MLOC
41.7
m
Windows server 2003
50 MLOC

LEGACY SOFTWARE

» Linux kernel 3.6
- 16 MLOC

» MacOS X 10.4
- 86 MLOC

» Debian 5.0
- 324 MLOC

LEGACY SOFTWARE

_ - Windows XP: > 45 M
/\ Lines of code (millions)

40 Windows 2000: 40 M
Red Hat 7.1
30 M

30

20

Windows 98: 18 M
Windows 95: 15 M

Unix V7/:
10,000

10

Red Hat 6.2

Solaris 7: 12 M 17 M

Windows NT: 4 M
) Wmdows3 1: 3 M @

1990 Linux: 10,000 1995 1998 2000

- NS

RELEVANCE?

» Estimations:
» 120 billion LOC maintained in 1990 (Ulrich, 1990)
» 200 billion in 2000 (Sommerville, 2000)

RELEVANCE?

» Annual cost in USA > $70 billion (Sutherland, 1995;
Edelstein, 1993)

» Nokia spent $90 million on Y2K

» US government spent > $8 billion

RELEVANCE?

Cost of maintenance in a software life

from Pigoski
1996

1970s early 1980s late 1980s 1990s 2000s

AGENDA

» Introduction (definitions)
» Importance of the topic
» Some facts

» (Consequences

SOME FACTS

» Dominant activity in software engineering

> Yet, still poorly understood and despised
» Punishment
» Probation

» No career advancement

TRUE/FALSE?

» Maintenance can be eliminated with perfect developmer True False

» Maintenance will be solved by modern technology (ex. Model

Driven Development)

» Maintenance is dificult and boring

» Better restart from scratch

ELIMINATE MAINTENANCE?

» Why didn't they do it right in the first place?!?

» [am loosing time correcting other peoples' mistakes!

ELIMINATE MAINTENANCE?

» Development techniques improve all the time
» Software processes (Agile, TDD)
» Software quality (CMMI)
» Tools (IDEs, xUnit)
» Languages (AOB, MDD)

» Maintenance problem still exist !

MAINTENANCE CATEGORIES

Diagnosing and
fixing errors, possibly
ones found by users

Perfective

@ Adaptive
Corrective

@ Preventive

HARDWARE / SOFTWARE

» Hardware maintenance:

» replacement of used parts

» Software maintenance:

» Source code doesn't wear
» Maintenance is mainly evolution

» Little bug correction

Soltware Systems must be
continually;aadaptedorthey.hecome

progressively.less satisiactory.

Firstlaw of ;software evolution [LLehman, 1974/

SOFTWARE AND ENVIRONMENT

» A system works within the real world
» The world changes:

New business opportunities

Growing user expectations

New laws ...

> Software systems must evolve or die (not useful)

» Maintenance is mainly due to external causes

THE MUSSEL SHACK

» Once upon a time, a fisherman in Dunkerque opened a small
mussel selling point

o

THE MUSSEL SHACK

» Business was good

THE MUSSEL SHACK

THE MUSSEL SHACK

THE MUSSEL SHACK

THE MUSSEL SHACK

THE MUSSEL SHACK

THE MUSSEL SHACK

Valntenance is a SIgh of;

SuccessS! he system s used and
userul;the users want more

lI'he better the system, the more

maintenance (evolution)
it will require !

TRUE/FALSE?

» Maintenance can be eliminated with perfect developmer True False

v

» Maintenance will be solved by modern technology (ex. Model

Driven Development)

» Maintenance is difficult and boring

» Better restart from scratch

STANDISH GROUP STUDY ON THE SUCCESS OF SOFTWARE PROJECTS

100 %
) J I I I I_

50 % -

i 1 I I I I_
0% - | | | | |

2004 2006 2008 2010 2012

B Failure
Contested
B Success

LONG TERM AVAILABILITY

» Airbus A300 Life cycle
» Program began in 1972, production stopped in 2007

> 2007-1972 = 35 years
» Support will last until 2050

> 2050-1972 = - 78 years" ;
- -@, -v"‘"“ : 8, .' “’1" p
S e e "' -

o —— ——

N

NEW TECHNIQUES

» Cobol > 60% of all code in the world [eWeeks, 2001]
» 180 GLOC in use, + 1GLOC/year [Gartner, 2006]

NEW TECHNIQUES

® © 06 06 06 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O 0 O O 0 O O O O O O 0 O O O O O O O O 0 O O 0 O 0 O O 0 O O O 0 O 0 O O O O 0 O O O O 0 O 0 O O O O 0 O 0 O O 0 O 0 O 0 O O 0 O 0 O 0 0 O O O 0 0 0 0O 0 0 0 0 0 0 o

» (Cobol - 1959

5 septembre 19359 - Charles DE GAULLE, au 6 d'IALLICOURT

NEW TECHNIQUES

» Ada - 1983
» Creation of Internet (562 hosts)
» Macintosh did not exist

» MS Windows was announced
(v1.0 in 1985)

NEW TECHNIQUES

NEW TECHNIQUES

» New techniques do not target:
» Past technologies (Ada, Cobol)

» Existing systems

TECHNIQUES IMPROVEMENT

» Development techniques improve all the time
Software processes (Agile, TDD)
Software quality (CMMI)

- Tools (IDEs, xUnit)
Languages (AOP, MDD)

» Maintenance problem still exist!

NEW TECHNIQUES

» New techniques do not target existing legacy software

» Miss 90+ % of the market

NEW TECHNIQUES

» New techniques (models) are still programs
» Programs are models of the world

» They will need to be maintained

TRUE/FALSE?

» Maintenance can be eliminated with perfect developmer True False

v

» Maintenance will be solved by modern technology (ex. Model

Driven Development)

» Maintenance is difficult and boring

» Better restart from scratch

MORE DIFFICULT?

» Intrinsically more difficult than development
» Information missing on existing system

» Must preserve some backward compatibility (existing
data, user habits, ...)

» More chaotic (reaction to external events)

» J.ess resources

BORING?

» Difhicult # Boring

16
5| | |7]6] |
| 3| |2
42 | 5 | |6
(2] [1] | |
1 9 7 4
8 | | 5
4|6 | |3
29

BORING?

» Easy # Interesting

5/6]1/9, 7|3 2 4

o |
©
<t |
o |
9.m
ol
N~
-

BORING?

» Maintenance is difficult
» Can be seen as an interesting challenge

» A good way to learn many things (e.g. programming tricks)

TRUE/FALSE?

» Maintenance can be eliminated with perfect developmer True False

v/
» Maintenance will be solved by modern technology (ex. Model
Driven Development)
v/
» Maintenance is difficult and boring
v/ v/

» Better restart from scratch

RESTART FROM SCRATCH

RESTART FROM SCRATCH

» Software = Hardware
» Legacy software is successful

» New software =

» Costs
» New bugs

» Teaching user new habits

» Experience shows it can go very wrong

LOUVOIS EXAMPLE

00

» Errors of payment computation in 2012: 465 millions euros
» Hundreds of militaries have not been paid during several months.

W n 1996, the French Army ministry launched a project to unify the payment inter-
armies.

W After several failures, the project entered in production in April 2011.

W [t was abandoned in 201 : = ,,
t 013 ! 1, (3’ b maL & ConTROLER
. L \ /N MES HOMMES, MONSIEUR
W Global cost of the project: 80 million euros < g MINIGTRE /

RESTART FROM SCRATCH

» Recommended action: re-engineer
» Less risky
» Iterative approach
» Build on tested and proved solution
» Down side

» Future constrained by the past

TRUE/FALSE?

» Maintenance can be eliminated with perfect developmer True False

v/
» Maintenance will be solved by modern technology (ex. Model
Driven Development)
v/
» Maintenance is difficult and boring
v/ v/

» Better restart from scratch

AGENDA

» Introduction (definitions)
» Importance of the topic
» Some facts

» (Consequences

CONSEQUENCES

» The problem is cultural first
» Maintenance is not taught (implies it is not important?)
» Computer science evolves fast (“newer is better”)

» Technology evolves fast (Cobol, Ada on iPhone?)

CONSEQUENCES

» First need to change perception

[fegacy.soitware: A systeni which contintues to
pe USed becalse ofithe GoSt Of replacing or
redesigning It ana oiten AesSpIte IS POor
competitiveness ana;compatipility-with moaern

equivalents. Nnelmplication s that the system
IS large, monolithic and alificultto:moaiily.:

mondofacto.com/facts/dictionary

CONSEQUENCES

LLegacy soriwaresAlsystem Which
be used because of the ccors 1O
redesigningiir=p ofte" it

g C X
COMPE 1,305 d a\tematwe
i 4
equiva, suggest

| ns:
IS large, nd %

mondoftactc Wouitﬂfpictionary

'Yﬂes

CULTURAL PROBLEM

» Wrong ideas about it
» - Prejudice against it
» - Not studied

» - Not understood

» - Wrong ideas about it

CULTURAL PROBLEM

Software maintenance s the
moaiiication ofia Soitware proauct arter:

aelivery toe correctiraults; to improve

PEHOGHTIanGE Or OIhEr atttibutes:

ISO/IEC 14764:2006 Software Engineering —
Software Lite Cycle Processes — Malntenance

CULTURAL PROBLEM

Software maintenance s the
modification of:a software - 'Ict
[0 corrert

This

PEGHMance

ISO/IEC 14764:2006 Software Engineering —
Software Lite Cycle Processes — Malntenance

MAINTENANCE SHOULD BE PREPARED

» Start before delivery
» Who will maintain?
» What technology do they know?
» How to pass knowledge to them?
» Note: Maintenance is a knowledge intensive activity

» 40% to 60% of the time is spent on studying the system

> Processes are different
» Maintenance involves a much longer analysis activity
» Maintenance less planned, more chaotic (external events)

» Requires a different approach

CLOSING REMARKS

» Software evolution is very important
» Need to change the habits

» Need to invest in maintenance

» Tools

» Training

SOME VIDEQS TO GO FURTHER

> https://www.youtube.com/watch?v=i8]20ljuwTw in French
(1h20)

https://www.youtube.com/watch?v=i8J20IjuwTw

