
TESTS
Jeremie Dequidt

OVERVIEW
➤ Introduction

➤ What and how

➤ Test and development process

➤ Different types of test

➤ Test driven development

© Dr Benoît Combemale

TEST TO PREVENT…
➤ … an error introduced by the developer

➤ An error is an inappropriate or erroneous decision done by a
developer that leads to a default introduction

➤ … a default in the system

➤ A default is an imperfection in one of the system aspects that

contributes or may potentially contribute to one or several failure
occurrence…

➤ Sometimes several defaults are required to provoke a failure.

➤ … a failure during the execution

➤ A failure is an unacceptable behaviour of a system.

➤ The failure frequency reflects the reliability.

© Dr Benoît Combemale

DEFINITION

Testing is a manual or automated process that
aims to check that a system satisfies
properties requested by its specifications, or
to detect differences between results
produced by the system and those expected
by the specifications

 IEEE-STD729, 1983

© Dr Benoît Combemale

TEST PRINCIPLE

➤ Trying to discover bugs

➤ Trying to see if it works

© Dr Benoît Combemale

TEST PRINCIPLE

➤ Trying to discover bugs

➤ Trying to see if it works

Learning What is to see? What should be
• Why it is done What should we working?
• What it should do look at? Identifying an error
• How it is done What is visible? Diagnosing an error

Designing What are we Categorizing these
Having an overview looking for? errors

Executing How to look at it?
Analysing

© Dr Benoît Combemale

WHAT ARE WE TESTING?
➤ Which properties?

➤ Functionality

➤ Security / integrity

➤ Usability

➤ Coherence

➤ Maintenability

➤ Efficiency

➤ Robustness

➤ Etc.

© Prof David Janzen

HOW DO WE TEST?
➤ Static test

➤ Reading / reviewing code

➤ Automatic analysis (checking properties, coding rules)

➤ Dynamic test

➤ Executing the program with input data and observing the behaviour

© Dr Benoît Combemale

HOW DO WE TEST?
➤ Functional test (black box testing)

➤ Use the program functionalities description

➤ Structural test (white box testing)

➤ Use the internal structure of the program

I1
I2
I3

O
1
O
2

I1
I2
I3

O
1
O
2

© Dr Benoît Combemale

WITH WHAT WE TEST?
➤ A specification: expressing what is expected from the system

➤ Coding rules

➤ Technical specifications (natural language)

➤ Comments in code

➤ Contracts on operations (as in Eiffel)

➤ A UML model

➤ A formal specification (automata, B model, …)

© Dr Benoît Combemale

TEST HIERARCHY

Problem

Requirement
definition

Global design

Detailed design

Program

Software

System

Integration

Unitary
components

Requirement analysis

Technical specifications

Implementation Unit tests

Integration tests

System tests

Acceptance
	 tests

Maintenance

Functional tests plan

Integration tests plan

© Prof David Janzen

SOME TYPES OF TESTING
➤Unit Testing

➤ Testing individual units (typically methods)

➤ White/Clear-box testing performed by original programmer

➤ Integration and Functional Testing

➤ Testing interactions of units and testing use cases

➤Regression Testing

➤ Testing previously tested components after changes

➤Stress/Load/Performance Testing

➤ How many transactions/users/events/…can the system handle?

➤Acceptance Testing

➤ Does the system do what the customer wants?

© Dr Benoît Combemale

UNIT TEST
➤ Validate a module independently from the others

➤ Intensively validate the unitary functions

➤ Are the unit enough specified?

➤ Is the code readable, maintainable?

© Dr Benoît Combemale

UNIT TEST
➤ For a procedural language

➤ Unit of test = procedure

➤ For a OO language

➤ Unit of test = class

void Ouvrir (char *nom, Compte *C, float S, float D)

{

 C->titulaire = AlloueEtCopieNomTitulaire(nom);

 (*C).montant = S ;

 (*C).seuil = D ;

 (*C).etat = DEJA_OUVERT ;

 (*C).histoire.nbop = 0;

 EnregistrerOperation(C);

 EcrireTexte("Ouverture du compte numero ");

 EcrireEntier(NumeroCourant+1);

}

© Dr Benoît Combemale

INTEGRATION TEST
➤ Find an order to test and integrate the modules of the system

© Dr Benoît Combemale

INTEGRATION TEST
➤ Simple case:

➤ There is no cycle in the module  
dependencies

➤ Dependencies form a tree 
we can simply integrate  
modules from the bottom 
and up

© Dr Benoît Combemale

INTEGRATION TEST
➤ More complex case:

➤ There are cycles in the module dependencies

➤ It is really frequent in object systems

➤ Heuristics have to be found  
to find an integration order

© Dr Benoît Combemale

SYSTEM TEST
➤ Validate the whole system

➤ The proposed functionalities

➤ The system quality

➤ Charge, ergonomy, security, etc.

➤ From the GUI

© Dr Benoît Combemale

NON REGRESSION TEST
➤ Check that the modifications made have not introduced new

errors

➤ Check that what worked still works

➤ In the software maintenance phase

➤ After refactoring, add/removal of functionalities

➤ After a fault correction

© Prof David Janzen

SOME VIDEOS TO GO FURTHER
➤ https://www.youtube.com/watch?v=hBCaoN421Qs in

French

https://www.youtube.com/watch?v=hBCaoN421Qs

TEST DRIVEN DEVELOPMENT

© Prof David Janzen

WHAT IS TEST-DRIVEN DEVELOPMENT?
➤ TDD is a design (and testing) approach involving short, rapid

iterations of

Unit Test Code Refactor

© Dr Gauthier Picard

ADVANTAGES
➤ Write tests first => program is used even before it exists

➤ Reduce design conception

➤ Increase the self-confidence of the programmer during code
revision

➤ Joint design of the program and a set of non-regression tests

➤ Estimate the progress of project development (velocity)

© Prof David Janzen

TDD EXAMPLE: REQUIREMENTS
➤ Ensure that passwords meet the following criteria:

➤ Between 6 and 10 characters long

➤ Contain at least one digit

➤ Contain at least one upper case letter

© Prof David Janzen

TDD EXAMPLE: WRITE A TEST
import static org.junit.Assert.*;

import org.junit.Test;

public class TestPasswordValidator {

 @Test

 public void testValidLength() {

	 PasswordValidator pv = new PasswordValidator();

	 assertEquals(true, pv.isValid("Abc123"));

 }

}

Needed for JUnit

Cannot even run test yet because PasswordValidator doesn’t exist!

This is the teeth of the test

© Prof David Janzen

TDD EXAMPLE: WRITE A TEST
import static org.junit.Assert.*;

import org.junit.Test;

public class TestPasswordValidator {

 @Test

 public void testValidLength() {

	 PasswordValidator pv = new PasswordValidator();

	 assertEquals(true, pv.isValid("Abc123"));

 }

}

Design decisions: class name, constructor,

method name, parameters and return type

© Dr Gauthier Picard

JUNIT TEST INSTRUCTIONS

Instruction Description
fail(String) Make fail the test method

assertTrue(true) Always true
assertsEquals(expected, actual) Test if the values are the same
assertsEquals(expected, actual,

tolerance)
Proximity test with tolerence

assertNull(object) Check if the object is null
assertNotNull(object) Check if the object is not null

assertSame(expected, actual) Check if the variables refer the same
objectassertNotSame(expected, actual) Check if the variables do not refer the

same objectassertTrue(boolean condition) Check if the boolean condition is true

© Dr Gauthier Picard

JUNIT TEST ANNOTATIONS

Annotation Description
@Test Test method

@Before Method executed before each test
@After Method executed after each test

@BeforeClass Method executed before the first test
@AfterClass Method executed after the last test

@Ignore Method not run as test
@Test(expected=XXException) Specify the expected exception
Annotations have to be put before the methods of the unitary test class

© Dr Gauthier Picard

PHPUNIT TEST INSTRUCTIONS

Instruction Description
fail(String) ⚠ Does not exist in Php

assertTrue(true) Always true
assertsEquals(expected, actual) Test if the values are the same
assertsEquals(expected, actual,

tolerance)
Proximity test with tolerence

assertNull(object) Check if the object is null
assertNotNull(object) ⚠ Does not exist in Php

assertSame(expected, actual) Check if the variables refer the same
objectassertNotSame(expected, actual) Check if the variables do not refer the

same objectassertTrue(boolean condition) Check if the boolean condition is true

PHP UNIT ANNOTATIONS

Annotation Description
@test Test method

@before Method executed before each test
@after Method executed after each test

@beforeClass Static method executed before each test
@afterClass Static method executed after each test

@expectedException Specify the expected exception
Annotations have to be put before the methods of the unitary test class

© Prof David Janzen

TDD EXAMPLE: WRITE THE CODE
public class PasswordValidator {

 public boolean isValid(String password) {

 if (password.length() >= 6 &&  
	 	 	 password.length() <= 10) {

 return true;

 }

 else {

 return false;

 }

 }

}

© Prof David Janzen

TDD EXAMPLE: REFACTOR
import static org.junit.Assert.*;

import org.junit.Test;

public class TestPasswordValidator {

 @Test

 public void testValidLength() {

	 PasswordValidator pv = new PasswordValidator();

	 assertEquals(true, pv.isValid("Abc123"));

 }

}

Do we really need an instance of PasswordValidator?

© Prof David Janzen

TDD EXAMPLE: REFACTOR THE TEST
import static org.junit.Assert.*;

import org.junit.Test;

public class TestPasswordValidator {

 @Test

 public void testValidLength() {

 assertEquals(true, 	 	
PasswordValidator.isValid("Abc123"));

 }

}

Design decision:  
static method

© Prof David Janzen

TDD EXAMPLE: REFACTOR THE CODE
public class PasswordValidator {

 public static boolean isValid(String password) {

 if (password.length() >= 6 &&  
	 	 	 password.length() <= 10) {

 return true;

 }

 else {

 return false;

 }

 }

}

© Prof David Janzen

TDD EXAMPLE: REFACTORING #1
public class PasswordValidator {

 public static boolean isValid(String password) {

 if (password.length() >= 6 &&  
	 	 	 password.length() <= 10) {

 return true;

 }

 else {

 return false;

 }

 }

}

Can we simplify this?

© Prof David Janzen

TDD EXAMPLE: REFACTORING #1
public class PasswordValidator {

 public static boolean isValid(String password) {

 return (password.length() >= 6 &&  
	 	 	 password.length() <= 10);

 }

}

© Prof David Janzen

TDD EXAMPLE: REFACTORING #1
public class PasswordValidator {

 public static boolean isValid(String password) {

 return (password.length() >= 6 &&  
	 	 	 password.length() <= 10);

 }

}

“Magic numbers” (i.e. literal constants

that are buried in code) can be dangerous

© Prof David Janzen

TDD EXAMPLE: REFACTORING #2
public class PasswordValidator {

 private final static int MIN_PW_LENGTH = 6;

 private final static int MAX_PW_LENGTH = 10;

 public static boolean isValid(String password) {

 return (password.length() >= MIN_PW_LENGTH &&  
	 	 password.length() <= MAX_PW_LENGTH);

 }

}

© Prof David Janzen

TDD EXAMPLE: WRITE ANOTHER TEST
import static org.junit.Assert.*;

import org.junit.Test;

public class TestPasswordValidator {

 @Test

 public void testValidLength() {

 assertEquals(true, 		 PasswordValidator.isValid("Abc123"));

 }

 @Test

 public void testTooShort() {

 assertEquals(false, 	 	 PasswordValidator.isValid("Abc12"));

 }

}
No design decisions;

just unit testing

© Prof David Janzen

TDD EXAMPLE: WRITE ANOTHER TEST
import static org.junit.Assert.*;

import org.junit.Test;

public class TestPasswordValidator {

 @Test

 public void testValidLength() {

 assertEquals(true, 	 	 PasswordValidator.isValid("Abc123"));

 }

 @Test

 public void testTooShort() {

 assertEquals(false, 		 PasswordValidator.isValid("Abc12"));

 }

 @Test

 public void testNoDigit() {

 assertEquals(false, PasswordValidator.isValid("Abcdef"));

 }

}

© Prof David Janzen

TDD EXAMPLE: MAKE THE TEST PASS
public class PasswordValidator {

 private final static int MIN_PW_LENGTH = 6;

 private final static int MAX_PW_LENGTH = 10;

 public static boolean isValid(String password) {

 return (password.length() >= MIN_PW_LENGTH &&  
	 	 password.length() <= MAX_PW_LENGTH);

 }

}

© Prof David Janzen

TDD EXAMPLE: MAKE THE TEST PASS
import java.util.regex.Pattern;

public class PasswordValidator {

 private final static int MIN_PW_LENGTH = 6;

 private final static int MAX_PW_LENGTH = 10;

 public static boolean isValid(String password) {

 return (password.length() >= MIN_PW_LENGTH &&  
	 	 password.length() <= MAX_PW_LENGTH && 		
Pattern.matches(".*\\p{Digit}.*", 	 	 	 	 	 	
password));

 }

}

Check for a digit

© Prof David Janzen

TDD EXAMPLE: REFACTOR
import java.util.regex.Pattern;

public class PasswordValidator {

 private final static int MIN_PW_LENGTH = 6;

 private final static int MAX_PW_LENGTH = 10;

 public static boolean isValid(String password) {

 return (password.length() >= MIN_PW_LENGTH &&  
	 	 password.length() <= MAX_PW_LENGTH && 		
Pattern.matches(".*\\p{Digit}.*", 	 	 	 	 	 	
password));

 }

}

Extract methods

for readability

© Prof David Janzen

TDD EXAMPLE: DONE FOR NOW
import java.util.regex.Pattern;

public class PasswordValidator {

 private final static int MIN_PW_LENGTH = 6;

 private final static int MAX_PW_LENGTH = 10;

 private static boolean isValidLength(String password) {

 return password.length() >= MIN_PW_LENGTH &&

 	 password.length() <= MAX_PW_LENGTH;

 }

 private static boolean containsDigit(String password) {

 return Pattern.matches(".*\\p{Digit}.*", password);

 }

 public static boolean isValid(String password) {

 return isValidLength(password) && containsDigit(password);

 }

}

© Prof David Janzen

TEST DRIVEN DEVELOPMENT
➤ Test-driven development (TDD) is the craft of producing

automated tests for production code, and using that process
to drive design and programming.

➤ For every tiny bit of functionality in the production code, you
first develop a test that specifies and validates what the code
will do.

➤ You then produce exactly as much code as will enable that
test to pass.

➤ Then you refactor (simplify and clarify) both the production
code and the test code.

© Prof David Janzen

TEST DRIVEN DEVELOPMENT
➤ Definition

➤ Test-driven Development (TDD) is a programming practice that
instructs developers to write new code only if an automated test has
failed.

➤ The goal of TDD is to think in terms of behaviour, purpose, scenario

➤ The TDD Cycle2

➤ Write a test

➤ Make it run

➤ Make it right

Red

Green

Refactor

© Prof David Janzen

SOME TYPES OF TESTING
➤Unit Testing

➤ Testing individual units (typically methods)

➤ White/Clear-box testing performed by original programmer

➤ Integration and Functional Testing

➤ Testing interactions of units and testing use cases

➤Regression Testing

➤ Testing previously tested components after changes

➤Stress/Load/Performance Testing

➤ How many transactions/users/events/…can the system handle?

➤Acceptance Testing

➤ Does the system do what the customer wants?

TDD focuses here

and may help here

… and here

© Prof David Janzen

TDD MISCONCEPTIONS
➤ There are many misconceptions about TDD

➤ They probably stem from the fact that the first word in TDD
is “Test”

➤ TDD is not about testing, TDD is about design

➤ Automated tests are just a nice side effect

© Prof David Janzen

TDD MISCONCEPTION #1
➤ TDD does not mean “write all the tests, then build a system

that passes the tests”

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

System

© Prof David Janzen

TDD MISCONCEPTION #2
➤ TDD does not mean “write some of the tests, then build a

system that passes the tests”

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

System

© Prof David Janzen

TDD MISCONCEPTION #3
➤ TDD does not mean “write some of the code, then test it

before going on”

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

System

© Prof David Janzen

TDD MISCONCEPTION #4
➤ TDD does not mean “do automated testing”

JUnit

Abbot & Costello

Selenium

Fit

Fitnesses

System

© Prof David Janzen

TDD MISCONCEPTION #5
➤ TDD does not mean “do lot of testing”

Requirements Design Code

Test

Deploy

© Prof David Janzen

TDD MISCONCEPTION #6
➤ TDD does not mean “the TDD process”

➤ TDD is a practice

➤ (like pair programming, code reviews, and standup meetings)

➤ not a process

➤ (like waterfall, Scrum, XP, TSP)

© Prof David Janzen

TDD CLARIFIED
➤ TDD means “write one test, write code to pass that test,

refactor, and repeat”

Test 1

Test 2

Test 3

Test 4

Unit 1

Unit 2

Unit 3

Unit 4

Refactor

Refactor

Refactor

Refactor

© Prof David Janzen

SOME VIDEOS TO HELP
➤ https://www.youtube.com/watch?v=T38L7A0xP-c in English,

but 12 minutes.

➤ https://www.youtube.com/watch?v=nbSaq_ykOl4 in French,
almost the same example, but in 45 minutes

➤ https://www.youtube.com/watch?v=yiCpfd-kz3g in French,
an other example, still in 45 minutes

➤ https://www.youtube.com/watch?v=I8XXfgF9GSc in English
about JUnit and Eclipse without TDD (just to understand that
you can use JUnit without TDD)

https://www.youtube.com/watch?v=T38L7A0xP-c
https://www.youtube.com/watch?v=nbSaq_ykOl4
https://www.youtube.com/watch?v=yiCpfd-kz3g
https://www.youtube.com/watch?v=I8XXfgF9GSc

